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An image of a river network is an important element of the content of a map. In the cartographical aspect the image of a river network forms a basis for mapping other elements of its content. Thus, it is required full, exact and geographical correctly mapping river networks on the maps. Completeness and geographical correctness of the image of a river network on maps is reached by application of appropriate methods of generalization. 

A possibility of application of a multifractal approach for images of river networks is analyzed in this paper. The multifractal approach uses the whole spectrum of fractal dimensions characterizing the statistical nature of self-similarity of river networks. Due to this approach it was possible to describe a structural organization of river networks. Moreover, as a result of researches, relations for estimating quality of generalizied images of river networks were obtained. These relations take into account changes of a form of individual streams, their relative position, and also semantic content of a image of a river network.

The paper is organized as follows. In Section 1 we describe a structural organization of river networks. In Section 2 we introduce a method for a multifractal analysis of digital images of river networks.  In Section 3 we investigate into the possibility of applying multifractal parameters as adequate measures for an estimation of quality of generalization of cartographic images of river networks and finally we specify prospects of applying the multifractal approach in cartography.

1. The structural organization of river networks

At the present time ordering systems are used to group and characterize the parts that constitute a drainage network. The Horton-Straller ordering system is the most commonly used in hydrogeomorfology now. This ordering procedure analyzes network as follows:
· channels that originate at a source – have no tributaries – are defined to be first-order streams;
· when two streams of order ( join, a stream of order (+1 is created;
· when two streams of different order join, the channel segment immediately downstream has the higher order of the two combining streams.
The nature of the river network, as well as the features of the individual components of the general structure are described through a framework dependent on the existence of fundamental scales. This type of description changed dramatically after the introduction of fractal geometry by Mandelbrot in the late sixties [1]. Fractals brought a completely new and different perspective into the analysis of river networks. In river systems fractal scalings can be observed at two different levels, either in the organization of the river network structure at different levels or in the individual wandering watercourse. Fractal and multifractal properties of river systems at both levels have been analyzed by Tarboton D. et al. [2], La Barbera P. and Rosso R. [3], Rodriguez-Iturbe, I. and Rinaldo, A. [4], Malinnikov V. A. [5]. In the last ten years, much research was carried out, leading to the important conclusion: the projections of river networks on topographic maps are multifractal objects [6, 7]. Thus the multifractal analysis becomes a major tool for future implementation of generalization algorithms in automated cartography.
2. The multifractal analysis of images of river networks

Today there is a great number of methods of generation the multifractal measures, applied for an estimation of the multifractal characteristics of river networks (the box-counting method, the generalized correlation integral method etc). However each of these methods does not take into count hierarchical distribution of streams of different order in a network. These methods are not necessarily appropriate for studying river networks because of the arbitrary size of cells and the presence of distinct boundaries in the data. For the method that is more hydrological relevant the use of a special hydrological cell was proposed [8]. This cell is a river catchment derived for all orders of the stream network. After decomposition a river network into hydrological cells the average length of a catchment of order j is defined, and also a number of streams of order i, which fall into the catchment of order j is calculated
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where nij is a number of streams of order i, which fall into the catchment of order j; 
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 is a number of streams in the catchment of order j. It is possible to show that the following relation holds  [8]
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where j is the catchment order, 
[image: image4.wmf]j

l

 is the average length of catchments of order j and L is a total length for the whole catchment. The function 
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 (the sequence of mass exponents) in Eqn. (1) is a rate of change of the corresponding moments and it is directly connected with generalized fractal dimensions Dq. The generalized fractal dimensions Dq can be obtained through the well-known formula [9]
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In practice the quantities D0, D1 and D2 are of our main interest. When q=0, 
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, which is the fractal dimension of the support set; D1 is the information dimension; D2 is the correlation dimension. In addition to functions Dq and 
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 the multifractal spectrum 
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 is used. The function 
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 is the fractal dimension of the subset of cells characterized by the same α value. α is a non-integer exponent known as the crowding index or Lipschitz-Holder exponent. The function
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, which is called the multifractal spectrum, gives a full description of any fractal object including any uniform fractals. The 
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 spectrum for the latter is an only single point on a  f – α plane. Once 
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 values are determined, the Lipschitz-Holder exponents, α, and the multifractal spectrum, 
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, are obtained by means of a Legendre transform.
3. Multifractal measures for estimating the quality of generalization of images of river networks

A quantitative measure of shape similarity
During the generalization of image of river networks the shape of components of river network simplify when the scale is decreasing, but however similarity of objects on the maps is kept before and after generalization. The fractal dimension is very often applied as the quantitative characteristic for similarity of objects on the maps of different scales. At the present time a great number of algorithms for defining the fractal dimension of a river network and its parts are developed [4]. In particular, dimension of whole river network, D0, obtained as a result of the multifractal analysis can be used for quantitative estimating the measure of shape similarity of river networks before and after generalization. In this case, quantitative measure of shape similarity during generalization of images of river networks can be obtained by the relation
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where A – the map obtained as a result of generalization (after generalization), B -  base map (before generalization).
A quantitative measure of semantic content similarity
 During the generalization process objects can be aggregated into one, or be deleted. These operations imply a loss of information and there have been statistics described in [11] for measuring the amount of information in a set of objects. The existing entropy calculation measures the information within a set of non-spatial objects and is based solely on the number of objects within each class on the map. In reality, on a map the objects are spatially distributed; two maps with image of river network could have drastically different spatial distributions as discussed in [12]. In this paper we offer to apply the information dimension as a quantitative measure of river information content
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where pij - probabilities of streams of order i, which fall into the catchment of order j; 
[image: image17.wmf]j

N

 - is a number of streams in the catchment of order j; 
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 - average length of a catchment of order j. In Eqn. (2) numerator coincides (except for sign) with Shennon’s entropy for the river catchments of different orders. This quantity can be applied to measure of a semantic content of cartographic images of river networks before and after generalization
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where A – the map obtained as a result of generalization (after generalization), B -  base map (before generalization). The SCS ranges from 0 to 1. The SCS is more close to 1, the maps before and after generalization are identical in content aspect. 
A quantitative measure of location similarity

Objects can be displaced during generalization and this displacement becomes greater as scale decreases. This change can be reflected and measured in the change in distance relative to other objects. In this work as a quantitative measure of stream location similarity we propose to apply a relation of the correlation dimension obtained before and after generalization
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where A – the map obtained as a result of generalization (after generalization), B -  base map (before generalization). 

Conclusion
 In this paper we presented an approach that can calculate the quality of alternative generalized cartographic images of river networks using a multifractal framework. The approach takes into account changes in components of river networks in the form of Shape Similarity, groups of river components using of Location Similarity and changes across the cartographic image of a entire river network using Semantic Content Similarity. By comparing two maps of the same area, but different time-periods, and applying a data-mining algorithm to sub-areas of the two cartographic images of river networks, it would be possible to use the map as the search-space to search out the sub-area with the most change.
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